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1 The curveC is defined parametrically by

x = 2 cos3 t and y = 2 sin3t, for 0 < t < 1
20.

Show that, at the point with parametert,

d2y

dx2 = 1
6 sec4t cosect. �4�

2 Find the general solution of the differential equation

d2x

dt2 + 4
dx
dt

+ 4x = 7− 2t2. �6�

3 Given thata is a constant, prove by mathematical induction that, for every positive integern,

dn

dxn �xeax� = nan−1eax + anxeax. �6�

4 The sequencea1, a2, a3, … is such that, for all positive integersn,

an = n + 5
��n2 − n + 1�

− n + 6
��n2 + n + 1�

.

The sum
NÐ

n=1

an is denoted bySN . Find

(i) the value ofS30 correct to 3 decimal places, [3]

(ii) the least value ofN for whichSN > 4.9. [4]

5 The cubic equationx3 + px2 + qx + r = 0, wherep, q andr are integers, has roots!, " and', such that

! + " + ' = 15,

!2 + "2 + '2 = 83.

Write down the value ofp and find the value ofq. [3]

Given that!, " and' are all real and that!" + !' = 36, find! and hence find the value ofr. [5]

6 The matrixA, where

A =
` 1 0 0
10 −7 10
7 −5 8

a
,

has eigenvalues 1 and 3. Find corresponding eigenvectors. [3]

It is given that

`
0
2
1

a
is an eigenvector ofA. Find the corresponding eigenvalue. [2]

Find a diagonal matrixD and matricesP andP−1 such thatP−1AP = D. [5]
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7 The linear transformation T :>4 → >4 is represented by the matrixM, where

M =
�

1 −2 −3 1
3 −5 −7 7
5 −9 −13 9
7 −13 −19 11

�

.

Find the rank ofM and a basis for the null space of T. [6]

The vector

�
1
2
3
4

�

is denoted bye. Show that there is a solution of the equationMx = Me of the form

x =
�

a
b
−1
−1

�

, where the constantsa andb are to be found. [4]

8 The curveC has equationy = 2x2 + kx
x + 1

, wherek is a constant. Find the set of values ofk for which

C has no stationary points. [5]

For the casek = 4, find the equations of the asymptotes ofC and sketchC, indicating the coordinates
of the points whereC intersects the coordinate axes. [6]

9 It is given thatIn = Ó e

1
�ln x�n dx for n ≥ 0. Show that

In = �n − 1��In−2 − In−1� for n ≥ 2. �6�

Hence find, in an exact form, the mean value of�ln x�3 with respect tox over the interval 1≤ x ≤ e.
[6]

10 Using de Moivre’s theorem, show that

tan 51 = 5 tan1 − 10 tan31 + tan51
1− 10 tan21 + 5 tan41 . �5�

Hence show that the equationx2 − 10x + 5 = 0 has roots tan2
�1

50
�

and tan2
�2

50
�
. [4]

Deduce a quadratic equation, with integer coefficients, having roots sec2
�1

50
�

and sec2
�2

50
�
. [3]

[Question 11 is printed on the next page.]
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11 Answer onlyone of the following two alternatives.

EITHER

The pointsA, B andC have position vectorsi, 2j and 4k respectively, relative to an originO. The
point N is the foot of the perpendicular fromO to the planeABC. The pointP on the line-segment
ON is such thatOP = 3

4ON. The lineAP meets the planeOBC at Q. Find a vector perpendicular to

the planeABC and show that the length ofON is
4��21� . [4]

Find the position vector of the pointQ. [5]

Show that the acute angle between the planesABC andABQ is cos−1�2
3

�
. [5]

OR

The curveC has polar equationr = a�1− cos1� for 0 ≤ 1 < 20. SketchC. [2]

Find the area of the region enclosed by the arc ofC for which 1
20 ≤ 1 ≤ 3

20, the half-line1 = 1
20 and

the half-line1 = 3
20. [5]

Show that
@

ds
d1

A2

= 4a2 sin2�1
21

�
,

wheres denotes arc length, and find the length of the arc ofC for which 1
20 ≤ 1 ≤ 3

20. [7]
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